Influence of Different Types of Obstacles on the Propagation of Premixed Methane-Air Flames in a Half-Open Tube

نویسندگان

  • Quan Wang
  • Shanghao Liu
  • Chi-min Shu
  • Yibin Ding
  • Zhimin Li
چکیده

To understand the propagation characteristics of methane-air deflagration flames and in an obstacle-filled tube, a high-speed color video camera, photoelectric sensors, and pressure transducers were used to test the deflagration flame propagating parameters. The tests were run in a 1500 mm long plexiglass tube with a 100 × 100 mm square cross-section. The obstacles included four types of repeated baffles and five forms of solid structure obstacles. The results showed that: (1) the flame front was constantly distorted, stretched, and deformed by different types of obstacles and, consequently, the flame propagating parameters increased; (2) plates and triple prisms increased the speed of the flame and overpressure to the highest extent, whereas cuboids and quadrangulars exerted an intermediate effect. However, the effect of cylindrical obstacles was comparatively limited. It was suggested that the obstacle’s surface edge mutation or curvature changes were the main factors stimulating the flame acceleration; (3) the peak pressure of deflagration was relatively low near the ignition end, increased gradually until it reached the maximum at the middle of the tube, and decreased rapidly near the open end; and (4) the fixed obstacles in front of the flame exhibited a blocking effect on flame propagation during the initial stages; the flame speed and overpressure increased when the flame came into contact with the obstacles. This study is of significance because it explains the methane-air propagation mechanism induced by different types of obstacles. The findings have value for preventing or controlling gas explosion disasters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Premixed flames propagating freely in tubes

This paper reports an experimental investigation of premixed propane and methane-air flames propagating freely in tubes 1.5 m long and with diameters 54 and 94 mm. Two regimes of propagation are distinguished by correlating the flame speed and the radius of curvature at the flame tip. The characteristic lengths are then related to the cut-off wavelengths estimated from linear theories and compa...

متن کامل

Influence of coal dust on premixed turbulent methane–air flames

This study discusses the design of a new experimental platform, the Hybrid Flame Analyzer (HFA) to measure burning velocity of gas, dust, and hybrid (gas and dust) premixed flames. The HFA is used to analyze a particle–gas–air system of coal dust particles (75–90 lm and 106–120 lm) in a premixed CH4–air (/g = 0.8, 1.0 and 1.2) flame. Experimental results show that particles usually increase the...

متن کامل

The effects of added hydrogen to the premixed of methane and air in a MEMS channel

In this paper, the effect of adding hydrogen to the composition of methane and air in a micro combustor is investigated by a three-dimensional numerical method. First, the results of the current study in determining the wall temperature of the micro combustion chamber are compared with those obtained from the experimental and numerical results of the previous research. By confirming the numeric...

متن کامل

Effect of fuel type on the extinction of fuel and air stream diluted partially premixed flames

Previous investigations have demonstrated that the roles of fuel stream dilution (FSD) and air stream dilution (ASD) in suppressing CO2-diluted methane flames are strongly influenced by the level of partial premixing. Herein, we compare this influence for both counterflow and coflow laminar non-premixed and partially premixed flames (PPFs) established with various fuels, including methane, ethy...

متن کامل

Effect of the temperature difference between gas and organic dust on propagating spherical flames

A new analytical study performed to investigate the effect of the temperature difference between gas and particle in propagation of the spherical flames. The combustible system is containing uniformly distributed volatile fuel particles in an oxidizing gas (Air) mixture. The model includes evaporation of volatile matter of dust particles to known gaseous fuel (methane) and the single-stage reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017